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Abstract: A harmonically self-similar temporal partition, which turns out to be subtly exhibited by
elite swimmers at middle distance pace, is formally defined for one of the most technically advanced
swimming strokes—the butterfly. This partition relies on the generalized Fibonacci sequence and
the golden ratio. Quantitative indices, named φ-bonacci butterfly stroke numbers, are proposed to
assess such an aforementioned hidden time-harmonic and self-similar structure. An experimental
validation on seven international-level swimmers and two national-level swimmers was included.
The results of this paper accordingly extend the previous findings in the literature regarding human
walking and running at a comfortable speed and front crawl swimming strokes at a middle/long
distance pace.

Keywords: generalized Fibonacci sequence; self-similarity; golden ratio; butterfly swimming; elite
swimmers

1. Introduction

Fibonacci numbers play crucial roles in combinatorial mathematics and elementary
number theory. Although such numbers have been investigated for centuries, they continue
to intrigue mathematicians and researchers in many areas of human endeavor (as can be
seen in [1] and the references therein), while providing new tools for expanding the frontiers
of mathematical study. In respect to this, the golden ratio φ ≈ 1.61803, namely the positive
solution to the equation x2 = 1 + x, appears in some very fundamental relationships
involving numbers, with one of the most basic occurrences of the golden ratio involving
the use of two seed values and a simple Fibonacci-like additive recursion relationship.

Walking and running are human gait modes exhibiting different mechanics and en-
ergetics. A double support phase, i.e., both limbs are in ground contact, identifies the
walking gait, whereas a double float phase, i.e., no limb is in ground contact, identifies the
running gait. However, both physiological (symmetric and recursive) human walking and
running are characterized, from a temporal point of view, by only four specific time inter-
vals, associated with the durations of gait cycle, swing, stance and double support (double
float) phases. More precisely, physiological symmetric walking (running) is classically
recognized to exhibit:

• A stance (swing) duration, tST (tSW), being close to 62% of gait cycle duration tGC;
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• A swing (stance) duration being close to 38% of gait cycle duration;
• A double support (double float) duration, tDS (tDF), being consequently close to 24%

of gait cycle duration.

As recently formally recognized in [2], the above sequence {0.24, 0.38, 0.62, 1} can be
viewed as a slight approximation of the special sequence in walking:

Σ : {tDS/tGC, tSW/tGC, tST/tGC, 1} =
{

1/φ3, 1/φ2, 1/φ, 1
}

(1)

and its conceptual counterpart in running:

Σ : {tDF/tGC, tST/tGC, tSW/tGC, 1} =
{

1/φ3, 1/φ2, 1/φ, 1
}

. (2)

The above sequence Σ is nothing but a generalized four-length Fibonacci sequence [3] (with
the real numbers 1/φ3, 1/φ2 as seeds), generally defined, for any values γ and δ, by (ψ is
the negative solution to x2 = 1 + x):

Un = γϕn + δψn (3)

satisfying the recurrence:

Un = γϕn−1 + δψn−1 + γϕn−2 + δψn−2 = Un−1 + Un−2 . (4)

Regarding Σ: (i) the general Fibonacci sequence structure is rooted in the following duration
constraints of symmetric walking (and running, respectively): tDS + tSW = tST (respectively,
tDF + tST = tSW), tSW + tST = tGC; (ii) the specific φ-dependent (temporally harmonic)
self-similar structure relies on the special chain of ratios tSW/tDS = tST/tSW = tGC/tST
(respectively, tST/tDF = tSW/tST = tGC/tSW) all being equal to φ. Indeed, 1/φ3 ≈ 0.23608,
1/φ2 ≈ 0.38198, 1/φ ≈ 0.61804. In other words, conditions in (i)–(ii) apparently induce a
repeated self-proportional partition (namely self-similarity), in accordance with the fact
that two quantities are in the golden ratio if their ratio is the same as the ratio of their
sum to the larger of the two quantities. This way, walking and running implicitly involve
a fractal nature, in which the structure of the larger scale resembles the structure of the
sub-unit and in which one of the simplest ways of transformation, i.e., the new domain
composed of two previous ones, is highlighted.

Very recent experimental and theoretical analyses—inspired by the aforementioned
cyclic human movements in walking and running (see also [4,5]—have found harmonic
structures to even appear in front crawl swimming [6] at a middle/long distance pace, at
which the presence of redundant movements is reduced via in-phase synchronization with
the induced waves in the water. With respect to this, the recent paper [6] not only provides
a mathematical framework and experimental consistency for recognizing preliminary
evidence, for elite front-crawl swimmers swimming at a middle/long distance pace, a
recovery phase duration that is very close to the fundamental unit 3u f (where u f is equal to
the duration of the front crawl stroke divided by 12) but it also illustrates the existence of
harmonic structures—in both their simple and enhanced versions—that elite swimmers
seek to reproduce in order to improve their performance. We also refer the reader to [7,8]
for a different scenario involving the dimensionless Strouhal number.

A more technically advanced swimming stroke is the butterfly. Simultaneous strokes,
such as breaststroke and butterfly, are in fact considered to be highly technical due to the
complex coordination of the arm and leg actions [9]. In particular, in butterfly, the out-of-
water arms recovery is facilitated by the leg undulation. To be effective, however, the kick
must appear as a consequence of a body wave-like cefalo–caudal undulation motion [10].
Having a glide time with the arms extended forward at the top of the stroke is certainly
a strategy used to reduce the energetic cost (metabolic power/velocity) for long-distance
swims [11]. This way, the head, trunk and upper limbs are profiled in a streamlined position
in order to glide, and consequently, provide some rest at each stroke during a long butterfly
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swim (some aquatic animals such as giant cormorants, penguins, and dolphins improve
the metabolic efficiency of swimming by adopting locomotion patterns with alternating
periods of propulsion and gliding [10]). However, this is not effective for achieving a
higher stroke rate [10] and for avoiding great instantaneous velocity fluctuations. On the
other hand, when velocity and stroke rate increase, coordination becomes closer to an
in-phase mode [12,13], just like in human locomotion and in quadrupedal coordination.
Indeed, the significant skill effect in [10] indicates that elite swimmers—whom are the
object of analysis in this paper—have stronger arm/leg synchronization than the sub-elite
swimmers: elite swimmers adopt a shorter glide to overcome great forward resistance
and generate higher forces during the arm pull; sub-elite swimmers often compensate
for coordination mistakes by applying greater force. With respect to this, we also refer
the reader to [14]—for devices performing propulsion analysis in swimming; [15]—for a
quantitative evaluation of phases of turns during competition; and [16]—for the role of the
hip movement in the stroke mechanics.

The aim of this paper was to extend, for the first time in the literature—to the best
of our knowledge—the aforementioned findings regarding human walking and running
at comfortable speed and front crawl swimming strokes at a middle/long distance pace:
a harmonically self-similar temporal partition, which relies on the generalized Fibonacci
sequence and the golden ratio, is formally defined for the highly complex and upper and
lower-limbs-coordinated butterfly stroke. Quantitative indices, named φ-bonacci butterfly
stroke numbers, are accordingly proposed to assess such a hidden time-harmonic and
self-similar structure being subtly exhibited by elite swimmers at middle distance pace.

2. Generalized Fibonacci Sequences in Butterfly Stroke

This section presents the main result of the paper.

2.1. Butterfly Stroke Phases

Different arm and leg phases (see Figure 1) can be identified in a butterfly stroke S
with duration tS, here characterized by two leg undulations for one arm stroke [10,12,17].
They are in order, for the arms:

(i) Entry and catch phase (between the entry of the hands into the water and the beginning
of their backward movement), with duration tEC;

(ii) Pull phase (between the beginning of the backward movement of the hands and their
entry into the plane vertical to the shoulders), with duration tPL;

(iii) Push phase (between the positioning of the hands below the shoulders and their exit
from the water), with duration tPS;

(iv) Recovery phase (between the arrival of the hands at the water level and their subsequent
entry into the water), with duration tRE,

and for the legs:

(i) Downward phase 1 (between the high and low break-even points– at first occurrence–of
the feet during the first undulation), with duration tK1;

(ii) Upward phase 1 (between the low and high break-even points–at first occurrence–of
the feet during the first undulation), with duration tU1;

(iii) Downward phase 2 (between the high and low break-even points–at first occurrence–of
the feet during the second undulation), with duration tK2;

(iv) Upward phase 2 (between the low and high break-even points–at first occurrence–of
the feet during the second undulation), with duration tU2.

The inter-limb coordination of such phases is governed by the time delays (with a
positive or negative sign):

• T1, between the start of Entry and catch phase and the start of Downward phase 1;
• T2, between the start of Pull phase and the start of Upward phase 1;
• T3, between the start of Push phase, and the start of Downward phase 2;
• T4, between the start of Recovery phase, and the start of Upward phase 2.
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As shown in [10], elite swimmers show a smaller total time gap, taken as the sum—
expressed as the percentage of a complete stroke—of the absolute values of T1, T2, T3, T4
and used to assess the effectiveness of the global arm–leg coordination.

Figure 1. Butterfly stroke: arm and leg phases (case of T2, T3, T4 > 0) according to [12].

2.2. Self-Similarity and Enhanced Self-Similarity in Butterfly Stroke

We first define the repetitive butterfly stroke , in which T1 of the subsequent stroke
equals T1 of the stroke under investigation, so that the arm stroke (namely from the start
of Entry and catch phase to the start of the subsequent Entry and catch phase) equals the
leg stroke (namely, from the start of Downward phase 1 to the start of the subsequent
Downward phase 1). A repetitive butterfly stroke that is characterized by its values
(T1/tS = a [%], T2/tS = b [%], T3/tS = c [%], T4/tS = d [%]) is denoted hereafter by
(a, b, c, d)-repetitive butterfly stroke. We then define an (a, b, c, d)-repetitive butterfly stroke
that is kick-to-kick temporal symmetric by imposing the equality of the Upward phase 1 and
Upward phase 2 durations:

tU1 = tU2 + T1 . (5)

Furthermore, a highly coordinated (a, b, c, d)-kick-to-kick temporal symmetric repetitive
butterfly stroke is an (a, b, c, d)-kick-to-kick temporal symmetric repetitive butterfly stroke
that exhibits a relatively small positive value for the normalized total delay:

NTD =
√

a2 + b2 + c2 + d2 [%] . (6)

In light of [6], a self-similar partition in highly coordinated (a, b, c, d)-kick-to-kick
temporal symmetric repetitive butterfly strokes is presented hereafter.

Theorem 1. (F4): In a highly coordinated (a, b, c, d)-kick-to-kick temporal symmetric repetitive
butterfly stroke, the sequence:

F4 : {tK1 + tK2, tU1, tK1 + tK2 + tU1, tS} (7)

is a generalized Fibonacci sequence of length 4. If tU1/(tK1 + tK2) = φ, then the chain of inequalities:

tK1 + tK2 + tU1

tU1
=

tS

tK1 + tK2 + tU1
= φ (8)
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holds and the sequence F4 in (7) has a self-similar structure, with tK1 + tK2 + tU1 ≈ 61.804% of
tS, tU1 ≈ 38.198% of tS and tK1 + tK2 ≈ 23.608% of tS.

Proof. As in [6], the sequence F4 is represented through the discrete-time system:

y(k + 2) = y(k + 1) + y(k), k = 0, 1 , (9)

with y(0) = tK1 + tK2, y(1) = tU1 and y(2) = tS − tU2, y(3) = tS. Then, it suffices to write
the solution to its state-space description:

ξ(k + 1) = Mξ(k), k = 0, 1 (10)

as

ξ(1) = Mξ(0), (11)

ξ(2) = M2ξ(0) , (12)

with ξ(l) being the vector [y(l), y(l + 1)]T, l = 0, 1, 2, and M = [0, 1; 1, 1] with distinct
eigenvalues φ, 1− φ and orthogonal eigenvectors (cφ = (1 + φ2)−1/2):

vφ = cφ[1, φ]T, v(1−φ) = cφ[φ,−1]T . (13)

ut

The following theorem characterizes a stronger self-similarity property, referred to as
enhanced self-similarity. It relies on the following constraint (When tK2 > tK1, it suffices to
switch tK1 and tK2 in the C-constraint, in the sequence of Corollary 1 (including Remark
(F7)), in the corresponding index (24), and in the fourth comment Section 4):

C : tU1 = tK1 + 2tK2 (14)

Theorem 2. (F6): In a highly coordinated (a, b, c, d)-kick-to-kick temporal symmetric repetitive
butterfly stroke under C, the sequence (7) enforced with {tK1, tK2} to the left, meaning that:

F6 : {tK1, tK2, tK1 + tK2, tU1, tK1 + tK2 + tU1, tS} , (15)

is a generalized Fibonacci sequence of length 6. The equality tU1/(tK1 + tK2) = φ makes the
sequence F6 possess an enhanced self-similar structure, with tK1 + tK2 + tU1 ≈ 61.804% of tS,
tU1 ≈ 38.198% of tS, tK1 + tK2 ≈ 23.608% of tS, tK2 ≈ 14.591% of tS, tK1 ≈ 9.0175% of tS.

Proof. Sequence F6 can be represented by the discrete-time system:

y(k + 2) = y(k + 1) + y(k), k = 0, 1, 2, 3 , (16)

with initial conditions y(0) = tK1, y(1) = tK2 and y(2) = tK1 + tK2, y(3) = tU1, y(4) =
tK1 + tK2 + tU1, y(5) = tS. The previous analysis carried out in the proof of Theorem 1 can
be extended to cover the generalized 6-length Fibonacci sequence case. In particular, the
state-space representation of the system above reads:

ξ(k + 1) =Mξ(k), k = 0, 1, 2, 3 , (17)

with ξ(l) = [y(l), y(l + 1)]T, l = 0, 1, 2, 3, 4, andM as in the proof of Theorem 1. We now
explicitly write:
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[
y(2)
y(3)

]
= φ2βvφ + (1− φ)2αv(1−φ) (18)[

y(3)
y(4)

]
= φ3βvφ + (1− φ)3αv(1−φ) (19)[

y(4)
y(5)

]
= φ4βvφ + (1− φ)4αv(1−φ) , (20)

in terms of:

α =
〈

ξ(0), v(1−φ)

〉
= (φy(0)− y(1))cφ (21)

β =
〈
ξ(0), vφ

〉
= (y(0) + φy(1))cφ = (1 + φ2)cφy(0) . (22)

When α is equal to zero, i.e., the initial vector ξ(0) has no components along the v(1−φ)-
direction, y(1)/y(0) = φ holds and y(2)/y(1) = φ, y(3)/y(2) = φ, y(4)/y(3) = φ,
y(5)/y(4) = φ hold too. ut

Remark 1. (F7): In the very special case of T1 = tK2 − tK1 for the highly coordinated (a, b, c, d)-
kick-to-kick temporal symmetric repetitive butterfly stroke, the sequence (15), once enforced
with T1 to the left, becomes a generalized Fibonacci sequence of length 7, with the equality
tU1/(tK1 + tK2) = φ making the sequence F7 possess a strongly enhanced self-similar struc-
ture; T1 ≈ 5.5735% of tS is additionally obtained.

2.3. Quantitative Measures of Self-Similarity and Enhanced Self-Similarities

Two indices I f ,4, I f ,6—named φ-bonacci butterfly stroke number and enhanced φ-bonacci
butterfly stroke number—can be naturally introduced, in order to quantitatively assess self-
similarity or enhanced self-similarities of highly coordinated (a, b, c, d)-kick-to-kick temporal
symmetric repetitive butterfly strokes. They are, in order:

I f ,4 = 100
[
((tK1 + tK2 + tU1)/tS − 0.62)2 + (tU1/tS − 0.38)2

+((tK1 + tK2)/tS − 0.24)2
]1/2

(23)

I f ,6 = 100
[
((tK1 + tK2 + tU1)/tS − 0.62)2 + (tU1/tS − 0.38)2

+((tK1 + tK2)/tS − 0.24)2 + (tK2/tS − 0.14)2

+(tK1/tS − 0.10)2
]1/2

, (24)

where the values 0.62, 0.38, 0.24, 0.14, 0.10 are used to approximate 0.61804, 0.38198, 0.23608,
0.14591, 0.090175 of Theorem 1 and Theorem 2, respectively. The smaller such indices are,
the stronger the self-similarity is. The just self-similarity of Theorem 1 may clearly lead to a
non-zero value for I f ,6 that tends towards zero when the self-similarity tends to turn into
the enhanced self-similarity.

3. Experimental Analysis

The feasibility of the preceding analysis is here illustrated by the dedicated analysis of
butterfly stroke training sessions for: (i) seven international-level swimmers, namely IL1
(male, 31 y, 190 cm, 80 kg), IL2 (female, 31 y, 170 cm, 65 kg), IL3 (female, 27 y, 168 cm, 58 kg),
IL4 (male, 20 y, 196 cm, 80 kg), IL5 (male, 19 y, 180 cm, 73 kg), IL6 (male, 19 y, 193 cm, 85 kg),
IL7 (female, 27 y, 173 cm, 66 kg); (ii) two national-level swimmers, namely, NL1 (female,
19 y, 166 cm, 55 kg), NL2 (male, 25 y, 185 cm, 95 kg), all of them swimming at their own
middle distance pace. In particular, the above international-level swimmers and national-
level swimmers are reported, within the corresponding sets, in order of physical shape
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(measured as race performance capabilities) at the moment of data acquisition. While the
international-level swimmers IL1–IL7 compete at major international events on a regular
basis and hold national/international records, the national-level swimmers NL1–NL2 are
national medalists who compete on a regular basis of major national events (with NL1
being close to becoming an international-level swimmer). The analysis was performed
by using high frame rate videos (100 for IL1, NL2; 120 fps for IL2–IL7, NL1) of stable
strokes via the 2D BioMovie ERGO system at http://www.infolabmedia.eu/ (accessed on
7 June 2021).

3.1. Phase Durations and Interlimb Coordination

Phase and delay durations for all the swimmers IL1–IL7, NL1–NL2 are reported in
Tables 1–4: (a, b, c, d)-(almost) kick-to-kick temporal symmetric repetitive butterfly strokes
S (under constraints C) are exhibited (Kick-to-kick temporal symmetry appears to be almost
verified for IL1–IL7, NL1–NL2, with the modulus of the difference between tU1 and tU2 + T1
belonging to the set [5, 67] ms. Constraint C even appears to be almost verified for IL1–IL7,
NL1–NL2, with the modulus of the difference between tU1 and tK1 + 2tK2 belonging to the
set [1, 81] ms.), characterized by the (a, b, c, d)- and NTD-values reported in Tables 3 and 4.
In accordance with the evidence of [10] on elite swimmers, all of such relatively small
NTDs define highly coordinated strokes. All nine swimmers’ strokes exhibit a negative delay
T2 (leading to a lag time in glide position) and a positive delay T3. On the other hand, in
contrast to the international-level swimmers IL1, IL3–IL6, the international-level swimmers
IL2, IL7 and the national-level swimmers NL1, NL2 are characterized by a small negative
superposition of two contradictory actions (T1 < 0). Furthermore, T4 = 0 for NL1, whereas
T4 is negative for IL1–IL7 and NL2.

Table 1. Experimental data for swimmers IL1–IL7 and NL1–NL2: arm phase durations (in seconds).

tEC tPL tPS tRE tS

IL1 0.220 0.220 0.270 0.440 1.150
IL2 0.233 0.183 0.316 0.333 1.065
IL3 0.308 0.158 0.266 0.333 1.065
IL4 0.375 0.200 0.258 0.407 1.240
IL5 0.291 0.291 0.250 0.400 1.232
IL6 0.300 0.283 0.333 0.367 1.283
IL7 0.234 0.175 0.358 0.417 1.184

NL1 0.266 0.166 0.308 0.326 1.066
NL2 0.220 0.150 0.200 0.330 0.900

Table 2. Experimental data for swimmers IL1–IL7 and NL1–NL2: leg phase durations (in seconds).

tK1 tK2 tU1 tU2 tS

IL1 0.120 0.160 0.420 0.450 1.150
IL2 0.108 0.166 0.400 0.466 1.065
IL3 0.125 0.150 0.391 0.383 1.065
IL4 0.133 0.191 0.441 0.450 1.240
IL5 0.120 0.141 0.483 0.430 1.232
IL6 0.150 0.166 0.517 0.417 1.283
IL7 0.150 0.158 0.467 0.475 1.184

NL1 0.108 0.183 0.417 0.408 1.066
NL2 0.120 0.140 0.330 0.330 0.900

http://www.infolabmedia.eu/
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Table 3. Delays and related values for swimmers IL1–IL7 and NL1–NL2: delay durations (in seconds)
and NTD.

T1 T2 T3 T4 NTD

IL1 0.000 −0.100 0.100 −0.010 12.320%
IL2 −0.075 −0.200 0.017 −0.133 23.680%
IL3 0.016 −0.167 0.066 −0.050 17.570%
IL4 0.025 −0.217 0.024 −0.043 18.060%
IL5 0.058 −0.113 0.079 −0.030 12.380%
IL6 0.033 −0.117 0.117 −0.050 13.720%
IL7 −0.066 −0.150 0.142 −0.058 18.960%

NL1 −0.050 −0.208 0.043 −0.082 21.860%
NL2 −0.020 −0.120 0.060 0.000 15.070%

Table 4. Delays and related values for swimmers IL1–IL7 and NL1–NL2: (a, b, c, d)-values.

a b c d

IL1 0.00% −8.69% 8.69% −0.87%
IL2 −7.04% −18.78% 1.60% −12.49%
IL3 1.50% −15.68% 6.20% −4.69%
IL4 2.02% −17.50% 1.94% −3.47%
IL5 4.71% −9.17% 6.41% −2.44%
IL6 2.57% −9.12% 9.12% −3.90%
IL7 −5.57% −12.67% 11.99% −4.90%

NL1 −4.69% −19.51% 4.03% −7.69%
NL2 −2.22% −13.33% 6.67% 0.00%

3.2. Self-Similarity Analysis

The aggregate phase percentage values for the international-level swimmers IL1–IL7
and the national-level swimmers NL1–NL2 are reported in Tables 5 and 6, along with the
values for the indices I f ,4 and I f ,6 in (23) and (24). Comments are in order:

• Rather small values are obtained for IL1–IL7, with IL1’s one being the smallest, owing
to the strict closeness of the corresponding phase percentage values to 62%, 38%, 24%,
14%, and 10%;

• Relatively large reductions in the self-similarity and enhanced self-similarity magni-
tudes (especially of the latter) appear for the national-level swimmers NL1–NL2 when
compared to the international-level swimmers IL1–IL7;

• The I f ,4- and I f ,6- values turn out to reproduce the order of physical shape within the
two swimmers’ set;

• IL5 even presents an a = T1/tS-value (4.71%) that is close to the one (5.57%) character-
izing the strongly enhanced self-similar structure of Remark (F7);

• The slight differences in the phase durations of Tables 1 and 2 (compare, for instance,
IL2 to NL1, or IL4 to IL5, or IL2 to IL3), which lead to the differences in self-similarity
magnitudes of Tables 5 and 6, have been successfully identified via the high frame
rate analysis used in this paper, with the self-similarity information complementing
the delay partition values of Tables 3 and 4;

• Larger percentage reductions in enhanced self-similarity (with respect to self-similarity)
are exhibited by IL2, IL3, IL5—when compared to IL1, IL4, IL5, IL6, NL1, NL2—so that
the I f ,6- values for IL2–IL3 and IL5 tend to thicken (more than the I f ,4-ones) towards
the I f ,6- values for IL4 and IL6, respectively.
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Table 5. Data analysis for swimmers IL1–IL7 and NL1–NL2: aggregate phases (percentage values).

(tK1 + tK2 + tU1)/tS tU1/tS (tK1 + tK2)/tS tK2/tS tK1/tS

IL1 60.87 36.52 24.35 13.91 10.43
IL2 63.29 37.56 25.73 15.59 10.14
IL3 62.54 36.71 25.82 14.08 11.74
IL4 61.69 35.56 26.13 15.40 10.73
IL5 60.39 39.20 21.19 11.44 9.74
IL6 64.93 40.30 24.63 12.94 11.69
IL7 65.46 39.44 26.01 13.34 12.67

NL1 66.42 39.12 27.30 17.17 10.13
NL2 65.56 36.67 28.89 15.56 13.33

Table 6. Data analysis for swimmers IL1–IL7 and NL1–NL2: values of indices (23) and (24).

I f ,4 I f ,6

IL1 1.89 1.94
IL2 2.20 2.72
IL3 2.30 2.88
IL4 3.25 3.61
IL5 3.45 4.31
IL6 3.78 4.27
IL7 4.25 5.06

NL1 5.63 6.46
NL2 6.19 7.20

4. Discussion

By following up the direction highlighting the connections of human walking and
running gaits and front crawl swimming strokes with the generalized Fibonacci sequences
and golden ratio, this paper aimed to provide an answer to the question regarding the
existence of subtle and unveiled self-similar structures at the root of the butterfly stroke of
elite swimmers, for whom—as in dolphins and fish [18]—energy accrued by raising the up-
per body is transmitted along the body through wave-like movements [19]. Harmonically
characterizing butterfly strokes through self-similarity—in both its simple and enhanced
versions—and the φ-bonacci butterfly stroke numbers constitutes the original contribu-
tion of this paper, as a relevant application of computational number theory involving
generalized Fibonacci sequences.

When compared to the front crawl scenario of [6] (concerning the arm stroke):

• Theorem 1 and Theorem 2 provide partition constraints that regard the leg stroke,
with the inter-delay composition linking the arm phase partition with the leg phase
partition;

• The four-length generalized Fibonacci sequence F4 of Theorem 1 is generated by
tK1 + tK2, which plays the role of the recovery phase duration in the front crawl of [6]
and of the double support (double float) duration in walking (running) of [2];

• The durations tU1 and tU2 + T1 play the role of tFa and tFb in the front crawl stroke
in [6] and of the right and left swing (right and left stance) durations in the asymmetric
walking (running) of [2,5], with the involved equality between the durations of such
phases simply transposing the swing (stance)-symmetry constraint of symmetric
walking (running);

• In light of the twelve-tone equal temperament-based interpretation, constraint C
imposes that the stroke duration tS of an (a, b, c, d)-kick-to-kick temporal symmetric repet-
itive butterfly stroke equals the sum of the durations of eight disjoint sub-phases, three
among them with duration tK1 and five among them with duration tK2: according
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to [6], notes D4, E4, G4, C5 correspond, in the (suspended and restored) C-variant
Cadd2-chord, to the frequencies: f3(D4) = f02

3
12 = 293.7 Hz, f5(E4) = f02

5
12 =

329.6 Hz, f8(G4) = f02
8
12 = 391.96 Hz, f13(C5) = f02

13
12 = 2 f1(C4) = 523.2 Hz

( f0 = 246.9175 Hz), with n = 3, 5, 8, 13 corresponding to elements of a Fibonacci se-
quence and with the ratios 5/3 ≈ 1.667, 8/5 = 1.6, 13/8 = 1.625 of consecutive
elements of such sequence quickly getting close to φ;

• The above results—again occurring in elite swimmers—confirm that, in contrast
to walking, a precise swimming technique (coming from a considerable amount of
practice and instruction repeating specifically precise movements for a long enough
time, while producing rhythmic motor patterns through the interrelationship between
cortical input, central pattern generator (CPG), and sensory feedback) is relevantly
involved (the intra-cyclic variation of the horizontal velocity of the hip is larger in
non-expert swimmers than their expert counterparts [20]) as recalled by [6], the fractal
dimension is 1.8–1.9 for highly qualified expert swimmers [20], whereas it is 1.1–1.4
for on-land walking [21].

5. Practical Implications

Self-similarity, as defined in this paper, may become a reference point in the formula-
tion of advanced training programs (on the basis of (23), (24)) for elite swimmers, while:
(i) going beyond the evaluation of the inter-limb synchronicity level, classically used to
assess the performance of high-level butterfly stroke swimmers; and (ii) not affecting the
peculiar stroke duration of the swimmer. It is clear that improvements of the muscle
strength remain valid as well, but at a different level of analysis. The findings of this paper
might also provide comparative (quantitative) information about: (i) the physical recovery
level of the swimmer after a hard and intense workout; (ii) the conditioning of the rhythmic
neural patterns of the swimmer during the contingent-moment-based swimming actions;
and (iii) the swimmers’ improvements over time and the necessary correction actions to
improve the performance. Indeed, at a high-level, at which inter-individual coordination
variability reduces to a narrow range of movement variants [20], each small change that a
practitioner may perform might lead to a relevant change in the dynamic interaction of the
systems components [22].

6. Strengths and Limits

The derivations of this paper seem to provide meaningful information about both the
swimmer’s level and physical shape, which complement the analysis of the normalized
total delay. The results of this paper also seek to open new research directions aiming
to connect computational number theory (involving generalized Fibonacci sequence) to
human neural system modulating principles at the root of highly effective cyclic rhythmic
patterns of swimming. Anyway, the results of the present study should be interpreted
with caution, owing to its specific limits, such as: (i) the small size of the samples enrolled
in the experiments; and (ii) the dependence on high-frame rate analyses. Many aspects
should be further investigated in future studies. One of them relies on the fact that the
present analysis is focused on the proportions among the stroke phases, limiting this type
of analysis to temporal features. Furthermore, it could be certainly interesting to put
self-similarity in relationship with the role played by different sensory information in
constructing and maintaining the aforementioned stroke harmony.

7. Forecast

It is worth noticing how Figure 3 of [23] (200 m-pace, high-level male swimmer)
seems to respect such a self-similar partition in breaststroke, with the arm recovery and
the out-sweep phases in place of tFa , tFb and the arm in-sweep phase in place of the front
crawl stroke recovery phase. On the other hand, we recognized the same self-similar
partition in the fourth stroke of the start phase (which accounts for a greater percentage
of the race success [24]) in elite sprint kayaking contests, once the sequence generated
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by min{tExt, tPull}, tImm + max{tExt, tPull} is considered under the experimentally verified
constraint tRec − (2tImm + tPull + tExt + max{tExt, tPull}), in terms of the paddle immersion,
pull, paddle extraction and recovery phases of the stroke. Analogously, the reader can
appreciate in Table 2 and Figure 2 of [25] how, in the forward swing of the forehand
tennis stroke (cross court and down the line situations) of elite tennis players, the same
self-similar partition can be found owing to: (i) a temporal distance between the instants of
maximum racquet rotation angle and maximum hip linear velocity that is almost equal to
the temporal distance between the instants of maximum trunk angular velocity and ball
impact; (ii) instants of maximum wrist linear velocity and maximum trunk angular velocity
that occur at about 24% and 38% of the temporal distance duration between the ball impact
and the maximum racquet rotation angle, with these proportions not being exhibited by
high-level tennis players. All of these scenarios seem to suggest that harmonic properties
in top-level athletes—possessing talent, natural aptitudes or skills— are an expression of
a harmonic rhythm generated by CPG, in which the repetitive proportions of phases act
as an attractor for a smooth, efficient, graceful and melodic flow of movements in which
different limbs, joints and muscles are controlled at the same time and with a high level
of coordination.

8. Conclusions

A temporal partition for the butterfly stroke that is harmonically characterized by
Fibonacci sequence-based self-similarity—in both its simple and enhanced versions—was
presented and discussed. High frame rate video-based experiments on nine elite swimmers
(seven of international level and two of national level) were included. The practical
implications, strengths and limits of the analysis were discussed.
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